A&O SCI C111

Introduction to Machine Learning for Physical Sciences

Description: Lecture, 90 minutes; laboratory, 90 minutes. Designed for physical sciences students. Practical, hands-on introduction to seven of most popular algorithms of machine learning (ML). Students gain most practical skills to start working in industry or research immediately, using popular Python programming language, together with SciKitLearn ML library, and covering essential theory to understand what algorithms do. Focus on solving typical problems that arise in physical sciences. Covers algorithms in broad areas of ML, including supervised learning (regression and classification) and unsupervised learning (clustering and dimensionality reduction). Lectures and programming exercises. Concurrently scheduled with course C204. P/NP or letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
AD
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
1 of 1

Adblock Detected

Bruinwalk is an entirely Daily Bruin-run service brought to you for free. We hate annoying ads just as much as you do, but they help keep our lights on. We promise to keep our ads as relevant for you as possible, so please consider disabling your ad-blocking software while using this site.

Thank you for supporting us!