EC ENGR 230A

Detection and Estimation in Communication

Description: Lecture, four hours; discussion, one hour; outside study, seven hours. Requisite: course 131A. Applications of estimation and detection concepts in communication and signal processing; random signal and noise characterizations by analysis and simulations; mean square (MS) and maximum likelihood (ML) estimations and algorithms; detection under ML, Bayes, and Neyman/Pearson (NP) criteria; signal-to-noise ratio (SNR) and error probability evaluations. Introduction to Monte Carlo simulations. Letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
AD
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
1 of 1

Adblock Detected

Bruinwalk is an entirely Daily Bruin-run service brought to you for free. We hate annoying ads just as much as you do, but they help keep our lights on. We promise to keep our ads as relevant for you as possible, so please consider disabling your ad-blocking software while using this site.

Thank you for supporting us!