MATH 225A

Differential Topology

Description: Lecture, three hours; discussion, one hour. Manifolds, tangent vectors, smooth maps, tangent bundles and vector bundles in general, vector fields and integral curves, Sard theorem on measure of critical values, embedding theorem, transversality, degree theory, Lefshetz fixed-point theorem, Euler characteristic, Ehresmann theorem that proper submersions are locally trivial fibrations. S/U or letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
AD
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
1 of 1

Adblock Detected

Bruinwalk is an entirely Daily Bruin-run service brought to you for free. We hate annoying ads just as much as you do, but they help keep our lights on. We promise to keep our ads as relevant for you as possible, so please consider disabling your ad-blocking software while using this site.

Thank you for supporting us!