Machine Learning in Bioinformatics

Description: (Same as Bioinformatics M226 and Human Genetics M226.) Lecture, four hours; outside study, eight hours. Enforced requisite: course 32 or Program in Computing 10C with grade of C- or better. Recommended: one course from Biostatistics 100A, 110A, Civil Engineering 110, Electrical Engineering 131A, Mathematics 170A, or Statistics 100A. Familiarity with probability, statistics, linear algebra, and algorithms expected. Designed for engineering students as well as students from biological sciences and medical school. Biology has become data-intensive science. Bottleneck in being able to make sense of biological processes has shifted from data generation to statistical models and inference algorithms that can analyze these datasets. Statistical machine learning provides important toolkit in this endeavor. Biological datasets offer new challenges to field of machine learning. Examination of statistical and computational aspects of machine learning techniques and their application to key biological questions. Letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
1 of 1

Adblock Detected

Bruinwalk is an entirely Daily Bruin-run service brought to you for free. We hate annoying ads just as much as you do, but they help keep our lights on. We promise to keep our ads as relevant for you as possible, so please consider disabling your ad-blocking software while using this site.

Thank you for supporting us!